

Fiscal Episodes in the EMU: Elasticities and Non-Keynesian Effects

António Afonso and Frederico Silva Leal 2020

Portuguese Episode

1965-1982	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
Fiscal Episodes							E	E		E				E		E	E	С
САРВ	2.0	2.2	2.2	2.2	2.9	3.3	1.8	0.0	0.6	-1.3	-1.3	-1.6	-0.6	-2.5	-2.8	-5.6	-7.2	-3.0
∆CAPB	:	0.2	0.0	0.0	0.7	0.3	-1.5	-1.7	0.6	-1.9	0.0	-0.3	1.0	-1.9	-0.4	-2.7	-1.6	4.2
Real GDP Growth	9.4	4.6	4.2	5.1	2.4	8.5	10.5	10.4	4.9	2.9	-5.1	2.3	6.0	6.2	7.1	4.8	2.2	2.2
NK Episodes								RE		RE						RE	RE	
1983-2000	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Fiscal Episodes	С			С				E		С	E					E		
CAPB	-0.3	-1.6	-0.6	3.2	2.5	3.4	3.2	1.4	0.5	2.7	0.1	0.5	0.7	0.2	-0.2	-2.0	-1.0	-1.3
ΔСАРВ	2.8	-1.3	1.0	3.9	-0.7	0.9	-0.2	-1.7	-1.0	2.2	-2.6	0.4	0.2	-0.5	-0.4	-1.8	1.0	-0.3
Real GDP Growth	1.0	-1.0	1.6	3.3	7.6	5.3	6.6	7.9	3.4	3.1	-0.7	1.5	2.3	3.5	4.4	4.8	3.9	3.8
NK Episodes				EC				RE			RE							
2001-2017	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	
Fiscal Episodes	E	С		E		С			E	E	С	С		E	С	С	E	
CAPB	-2.9	-0.9	-1.0	-3.2	-3.1	-1.4	-0.7	-1.1	-5.9	-8.3	-2.5	1.2	2.1	-0.7	1.0	2.7	0.8	
ΔСАРВ	-1.5	1.9	-0.1	-2.2	0.1	1.7	0.6	-0.4	-4.7	-2.4	5.8	3.6	0.9	-2.8	1.7	1.7	-1.9	
Real GDP Growth	1.9	0.8	-0.9	1.8	0.8	1.6	2.5	0.2	-3.0	1.9	-1.8	-4.0	-1.1	0.9	1.8	1.9	2.8	
NK Episodes	RE					EC			RE						EC	EC		

Fiscal Episodes and non-keynesian effects in Portugal (1965-2017)

Source: Authors' calculations.

Note: E – Fiscal Expansions; C – Consolidations; RE – Recessive Expansions; EC – Expansionary Consolidations NKE are episodes where: i) the average real GDP growth during the two years after the fiscal contraction is greater than the growth during the two years before, and; ii) the real GDP growth during the two years after the expansions is smaller than the average growth during the two years before.

Some Literature Contributions

Giavazzi and Pagano (1996):

- Facing fiscal episodes, taxes and government consumption have positive and negative impacts on output, respectively;
- Transfers revealed to be expansionary during "normal times".

Miller and Russek (1996):

- Found evidences of non-Keynesian effects;
- Unusual fiscal contractions uses to amplify the positive and negative effects of government spending and revenue on real private consumption.

Van Aarle and Garretsen (2001):

- The evidence of non-Keynesian effects is limited during the transition period to the EMU;
- There is no evidence of non-linearities in both taxation and transfers;
- Government consumption has a positive influence on private spending;
- The effects of fiscal adjustments on private spending, appear to have been relatively small.

Some Literature Contributions

Afonso (2010):

- The long-run elasticity of private consumption with respect to general government final consumption is negative;
- A tax raise, during a fiscal consolidation, can have a positive long-run effect on private consumption;
- The long-run elasticity of social transfers is statistically significant and negative.

Afonso and Martins (2016):

- Consumers are not behaving in a Ricardian way;
- There is evidences of non-Keynesian effects in the absence of fiscal consolidations (tax-based).

Identifying Fiscal Episodes

CAPB-based Approach

We considered the definition made by Alesina and Ardagna (2010), where a fiscal episode, expansion or contraction, occurs when there is a change of at least 1.5 p.p. in the cyclically-adjusted primary balance.

$$FE^{E} = \begin{cases} 1; \ \Delta CAPB \le -1.5 \\ 0; \ \Delta CAPB > -1.5 \end{cases}; \quad FE^{C} = \begin{cases} 1; \ \Delta CAPB \ge 1.5 \\ 0; \ \Delta CAPB < 1.5 \end{cases}$$

The sample is composed by 19 Euro Area Member States for the period of 1960-2017 (data sourced from the AMECO database).

Identifying Fiscal Episodes

	Fiscal Ep	isodes	
Country	Expansions	Consolidations	Time-corios
country	∆CAPB<-1.5	∆CAPB>1.5	nine-series
Belgium	1972, 1976, 1980, 2003, 2005, 2009	1982, 1984, 2006	1966-2017
Germany	1995, 2001, 2010	1996, 2000, 2011	1991-2017
Estonia	1996, 1998, 2005, 2007-2008, 2011- 2012	2009	1996-2017
Ireland	1974-1975, 1978, 1990, 2001, 2007- 2010	1976, 1982-1983, 1988, 2000, 2003, 2011-2013	1970-2017
Greece	1975, 1981, 1985, 1988-1989, 2001, 2003-2004, 2006, 2008-2009, 2013, 2015	1982, 1986-1987, 1991, 1994, 1996, 2005, 2010-2011, 2014, 2016	1966-2017
Spain	2008-2009	1986, 1992, 1996, 2010, 2013	1971-2017
France	2009	1996	1971-2017
Italy	1972, 1981, 2000	1976, 1982, 1991-1993, 1997, 2007, 2012	1971-2017
Cyprus	2002, 2008-2009, 2014	2007, 2012-2013, 2015	1999-2017
Latvia	1998-1999, 2006	2009, 2011-2012	1998-2017
Lithuania	2007, 2011	1998-1999, 2010, 2012	1998-2017
Luxembourg	1979, 1986, 2002	1982-1983, 1985, 2005	1971-1987, 1996-2017
Malta	1996, 1998, 2003, 2008	1999, 2004, 2009, 2016-2017	1996-2017
Netherlands	1986, 2001, 2009	1977, 1991, 1993, 1996, 2013, 2016	1970-2017
Austria	1967, 1975, 2004	1984, 1997, 2001, 2005, 2015	1966-2017
Portugal	1971, 1972, 1974, 1978, 1980-1981, 1990, 1993, 1998, 2001, 2004, 2009- 2010, 2014, 2017	1982-1983, 1986, 1992, 2002, 2006, 2011-2012, 2015-2016	1966-2017
Slovenia	2013	2012, 2014, 2015	1999-2017
Slovakia	2000, 2002, 2005-2006, 2009	1998, 2001, 2003, 2011, 2013	1998-2017
Finland	1978-1979, 1982, 1987, 1991, 2001, 2009-2010	1967, 1976, 1981, 1984, 1988, 1996, 1998, 2000	1966-2017
Total	81	98	

Source: Authors' calculations.

Non-Keynesian Episodes

Non-Keynesian episodes, are fiscal episodes where:

- **A.** Expansionist Consolidations: the average real GDP growth during the two years after the consolidation is greater than the growth during the previous two years, and;
- **B. Recessive Expansions**: the average real GDP growth during the two years after the expansion is smaller than the average growth during the previous two years.

Non-Keynesian Episodes

Non-keynesian episodes, by date

	Non-keynesian epi	sodes
Country	Recessive expansions	Expansionary consolidations
Belgium	1980, 2009	1984, 2006
Germany	2001	2000, 2011
Estonia	1998, 2007, 2008, 2012	
Ireland	1974-1975, 1990, 2001, 2007-2009	1988, 2011, 2013
Greece	1981, 2004, 2008-2009	1994, 2014, 2016
Spain	2008-2009	1986, 1996, 2010, 2013
France	2009	
Italy	1981	1976
Cyprus	2002, 2008-2009	2007, 2015
Latvia	1998-1999	2011, 2012
Lithuania	2007	2010
Luxembourg	1979, 2002	1982-1983, 1985, 2005
Malta	1996, 1998, 2003, 2008	1999
Netherlands	1986, 2001, 2009	1977, 1993, 1996, 2013, 2016
Austria	1967, 1975	1997, 2005, 2015
Portugal	1972, 1974, 1980-1981, 1990, 1993,	1986, 2006, 2015-2016
	2001, 2009	
Slovenia		2014-2015
Slovakia	2009	2001, 2003, 2011
Finland	1982, 1991, 2001, 2009	1984, 1988, 1996
Total	52	45

Source: Authors' calculations.

Identifying Fiscal Episodes

Narrative Approach

The IMF proposed an alternative approach to determine fiscal episodes. Devries et al. (2011) and Gupta et al. (2017) presented a dataset of fiscal consolidations based on policy documents, central banks reports, Stability and Convergence Programs submitted to the European Commission, and IMF and OECD reports.

It should be noted that the sample only has 10 countries during the period of 1978-2015.

Identifying Fiscal Episodes

Comparison of Approaches

	Fiscal Consolidations												
Country	CAPB Approach	Narrative Approach	Common Episodes										
Belgium	1982, 1984, 2006	1982-1985, 1987, 1990, 1992-1994,	1982										
		1996-1997, 2010-2015											
Germany	1996, 2000, 2011	1982-1984, 1991-1995, 1997-2000,	2000, 2011										
		2003-2004, 2006-2007, 2011-2012											
Ireland	1982-1983, 1988, 2000, 2003, 2011-	1982-1988, 2009-2015	1982, 1983, 1988, 2013-2015										
	2013												
Spain	1986, 1992, 1996, 2010, 2012	1983-1984, 1989-1990, 1992-1997,	1992, 1996, 2010, 2012										
		2009-2015											
France	1996	1979, 1987, 1989, 1991-1992, 1995-	1996										
		1997, 1999-2000, 2011-2015											
Italy	1982, 1991-1993, 1997, 2007, 2012	1991-1998, 2004-2007, 2010-2015	1991-1993, 1997, 2007, 2012										
Netherlands	1991, 1993, 1996, 2013	1981-1988, 1991-1993, 2004-2005,	1991, 1993, 2013										
		2011-2013, 2015											
Austria	1984, 1997, 2001, 2005, 2015	1980-1981, 1984, 1996-1997, 2001-	1984, 1997, 2001, 2015										
		2002, 2011-2012, 2015											
Portugal	1982-1983, 1986, 1992, 2002, 2006,	1983, 2000, 2002-2003, 2005-2007,	1983, 2002, 2006, 2011-2012,										
	2011-2012, 2015	2010-2015	2015										
Finland	1981, 1984, 1988, 1996, 1998, 2000	1992-1997, 2011	1997										
Total	51	131	34										

Source: Authors' calculations, and Devries et al. (2011) and Gupta et al. (2017).

Empirical Assessment

• Question:

i) How the fiscal elasticities vary during fiscal consolidations (in comparison to the remaining period, and ii) what are the possible sources of non-keynesian responses (NKE)

Method:

-Sample: 19 Member States in 1960-2017 (natural logarithm of real per capita values)
-Country Fixed Effects model with dummies to identify fiscal episodes
-Estimate short and long-run elasticities of private consumption to fiscal instruments
-Wald Tests to compare the results during consolidations and in "normal times"

Baseline Specification:

$$\begin{split} &\Delta Priv_C_{it} = c_i + \lambda_1 Priv_c_{it-1} + \lambda_2 \Delta Y_{it} + \lambda_3 Y_{t-1} + FE^C \, X \left(\beta_1 \Delta Tax_{it} + \beta_2 Tax_{it-1} + \beta_3 \Delta ORev_{it} + \beta_4 ORev_{it-1} + \beta_5 \Delta CE_{it} + \beta_6 CE_{it-1} + \beta_7 \Delta GFKF_{it} + \beta_8 GFKF_{it-1} + \beta_9 \Delta Social_{it} + \beta_{10} Social_{it-1} + \beta_{11} \Delta OExp_{it} + \beta_{12} OExp_{it-1}\right) + (1 - FE^C) \, X \, (\alpha_1 \Delta Tax_{it} + \alpha_2 Tax_{it-1} + \alpha_3 \Delta ORev_{it} + \alpha_4 ORev_{it-1} + \alpha_5 \Delta CE_{it} + \alpha_6 CE_{it-1} + \alpha_7 \Delta GFKF_{it} + \alpha_8 GFKF_{it-1} + \alpha_9 \Delta Social_{it} + \alpha_{10} Social_{it-1} + \alpha_{11} \Delta OExp_{it} + \alpha_{12} OExp_{it-1}\right) + \mu_{it}, \end{split}$$

Robustness Tests:

Redundant Fixed Effects Likelihood tests Hausman test

Unit root tests

Baseline results (EA19)

			ΔPriv_Ct														
			Country F	ixed Effects	OI	LS											
	С		-0.068**	(-2.463)	-0.069***	(-2.585)											
λ_1	Priv_C _{t-t}		-0.047***	(-3.465)	-0.049***	(-3.662)											
λ_2	ΔY_t		0.580***	(17.28)	0.579***	(17.03)											
λ3	Y ₁₋₁		0.000	(0.065)	0.002	(0.196)											
β1	∆Tax _t		0.102	(1.548)	0.133***	(2.793)											
β_2	Tax _{t-1}		0.040**	(1.985)	0.036**	(2.295)											
β_3	$\Delta ORev_t$		-0.042***	(-2.875)	-0.012	(-1.256)											
β4	ORev _{t-1}		-0.004	(-0.835)	-0.001	(-0.231)											
βs	ΔCE_t		0.108	(1.466)	-0.038	(-0.819)											
β ₆	CE _{r-1}	* FE ^C	0.020	(1.242)	0.003	(0.251)											
β ₇	$\Delta GFKF_t$	ALE	0.018	(1.238)	0.031**	(2.090)											
βs	GFKF ₁₋₁		-0.005	(-0.689)	0.010*	(1.741)											
β»	ΔSocial		-0.150***	(-3.568)	-0.012	(-0.401)											
β ₁₀	Social,		-0.012	(-1.027)	-0.021**	(-2.017)											
β11	∆OExp _t		-0.021	(-1.095)	-0.001	(-0.067)											
β ₁₂	OExp _{i-i}		-0.014	(-1.429)	0.001	(0.135)											
α1	∆Tax,		0.107***	(3.987)	0.122***	(3.930)											
α2	Tax _{r-1}		0.030**	(2.465)	0.030**	(2.426)											
α3	$\Delta ORev_t$													-0.006	(-1.334)	-0.010*	(-1.864)
α4	ORev _{t-1}		0.001	(0.408)	0.000	(0.226)											
αs	ΔCE_t		0.050**	(2.019)	0.109***	(3.918)											
α6	CE ₁₋₁		-0.001	(-0.153)	-0.000	(-0.046)											
α,	$\Delta GFKF_t$	x(1-FE°)	0.018***	(2.762)	0.012*	(1.840)											
α	GFKF ₁₋₁		0.005*	(1.685)	0.001	(0.303)											
α,9	∆Social		0.015	(0.909)	-0.027	(-1.370)											
α ₁₀	Social, J		-0.006	(-1.029)	-0.003	(-0.550)											
α11	∆OExp _t		0.020**	(2.075)	0.017	(1.610)											
α ₁₂	OExp _{i-1}		-0.000	(-0.136)	-0.000	(-0.012)											
	N		703		703												
	R ²		0,719		0,705												
	Redundant FE Test		t-stat.	p-val													
			1.94	0.01													

Fiscal Consolidations

Note: The impacts are statistically significant at 1%, 5% and 10%, according to the classification ***, ** and * respectively (value of the t statistic in brackets).

Baseline results (EA19)

	Long-l	Run Elasticities				
$-\beta_2/\lambda_1$	Tax		0,85	Wald	Test	
-β4/λ1	ORev		-0,09	Null Hypotesis	t-stat.	p-val
-β ₆ /λ ₁	CE	* FFC	0,43	β1-α1=0	-0.07	0.95
-β ₈ /λ ₁	GFKF	XIL	-0,11	$\beta_{2}-\alpha_{2}=0$	-2.27	0.02
-β ₁₀ /λ ₁	Socia1		-0,26	βε-αε=0	0.74	0.46
-β ₁₂ /λ ₁	OExp		-0,31	β₀-α₀=0	-0.03	0.98
$-\alpha_2/\lambda_1$	Tax		0,65	β ₂ -α ₇ =0	-1.41	0.16
$-\alpha_4/\lambda_1$	ORev		0,02	β ₀ -α ₀ =0	-3.77	0.00
$-\alpha_6/\lambda_1$	CE		-0,04	β10-α10=0	-0.54	0.59
$-\alpha_8/\lambda_1$	GFKF	X(I-FE ⁻)	0,12	β11-α11=0	-1.89	0.06
-α ₁₀ /λ ₁	Socia1		-0,13			
$-\alpha_{12}/\lambda_1$	OExp		-0,01			

Baseline results (19 Member States)

- Cross-section fixed effects method is justified. The output is similar to OLS facing "normal times";
- The positive tax revenue elasticity indicates that consumers are behaving in a Ricardian way;
- All the remaining variables seem to have a Keynesian effect on private consumption during "normal times";
- Other revenue has a negative impact on private consumption during fiscal consolidations. The impact is stronger than in "normal times";
- Contrary to what happens in "normal times", social benefits shocks are recessive during fiscal consolidations;
- Other expenditure shocks are, at least, less effective to stimulate private consumption during fiscal consolidations (negative sign, but not statistically different from zero).

Narrative and CAPB approaches (10 MS)

R²

0,707

		Fis	cal Consolidati	ons						UNIVERSIDADE DE L	ISBOA
				ΔΡιίν	_Ct						
			Narrative	Approach	CA						
	С		-0,226***	(-4,378)	-0,213***	(-4,165)			_		
λι	Priv_C _{t-1}		-0,123***	(-5,473)	-0,113***	(-4,881)					
λ2	ΔY_t		0,410***	(9,851)	0,390***	(9,090)					
λ3	Y ₁₋₁		0,020	(1,153)	0,014	(0,830)					
βι	ΔTax_t		0,123***	(2,888)	0,102	(1,122)				T	
β2	Tax _{t-1}		0,071***	(3,886)	0,094***	(3,957)			Long-Ru	1 Elasticities	
β3	$\Delta ORev_t$		-0,018*	(-1,912)	-0,040**	(-2,435)			Na	rrative Approach	CAPB
β₄	ORev _{t-1}		-0,002	(-0,762)	-0,008	(-1,253)	$-\beta_2/\lambda_1$	Tax		0,59	0,09
βs	ΔCE_t		0,164***	(3,279)	0,099	(1,022)	-β4/λ1	ORev		0,01	-0,05
β6	CE ₁₋₁	- TTC	0,012	(0,951)	0,017	(0,919)	$-\beta_6/\lambda_1$	CE	V FFC	0,07	0,31
β ₇	$\Delta GFKF_t$	XFE	0,015	(1,163)	0,045**	(2,148)	-β ₈ /λ ₁	GFKF	ATE	-0,18	-0,05
βs	GFKF ₁₋₁		-0,004	(-0,691)	-0,002	(-0,193)	$-\beta_{10}/\lambda_1$	Socia1		-0,40	0,03
β ₉	Δ Social		-0,064	(-1,574)	-0,232***	(-3,458)	$-\beta_{12}/\lambda_1$	OExp		0,07	-0,04
B ₁₀	Social _{e-1}		-0,012	(-1,224)	-0,029**	(-2,204)	$-\alpha_2/\lambda_1$	Tax		-0,09	0,17
B11	$\Delta OExp_i$		0,023**	(1,999)	-0,041	(-1,427)	$-\alpha_4/\lambda_1$	ORev		-0,08	-0,03
B ₁₂	OExp _{t-1}		0,003	(0,469)	-0,008	(-0,587)	$-\alpha_6/\lambda_1$	CE		0,20	0,11
α1	ΔTax_t		0,103***	(3,006)	0,146***	(4,587)	$-\alpha_8/\lambda_1$	GFKF	x (1-FE°	0,15	0,02
α2	Tax _{t-1}		0,054***	(3,406)	0,063***	(4,094)	$-\alpha_{10}/\lambda_1$	Socia1		0,06	-0,01
α3	$\Delta ORev_t$		-0,009*	(-1,674)	-0,007	(-1,502)	$-\alpha_{12}/\lambda_1$	OExp		0,11	0,02
α4	ORev _{i-1}		-0,005	(-1,482)	-0,006**	(-2,144)					
α5	ΔCE_t		0,013	(0,701)	0,016	(0,874)					
α6	CE _{t-1}		0,029***	(2,757)	0,018*	(1,798)					
α,	$\Delta GFKF_1$	x(1-FE°)	0,029***	(2,645)	0,032***	(3,676)					
α ₈	GFKF ₁₋₁		0,003	(0,739)	0,003	(0,753)					
α9	∆Social		-0,024	(-1,107)	0,004	(0,189)					
u ₁₀	Social ₆₋₁		-0,011	(-1,468)	-0,015**	(-2,213)					
u ₁₁	$\Delta OExp_t$		-0,030**	(-2,092)	-0,008	(-0,771)					
×12	OExp _{i-1}		0,004	(0,701)	0,005	(0,917)					
	N		357		357						

0,694

Narrative and CAPB approaches (10 Member States)

- Private consumption has a non-keynesian response to a tax revenue shock both in the short and long-run;
- On the Narrative Approach:
 - Contrary to what occurs during fiscal consolidations, an increase in other expenditures seems to have a recessive impact during normal times.
- On the CAPB Approach:
 - Under austerity policies, with the exception of the investment and other revenue, the statistically significant variables have a non-keynesian behavior;
 - Once again, social benefits seem to be recessive during fiscal consolidations.

Robustness I: EMU membership

Fircal Consolidation

					ΔPriv	v_C,			\sim	UNIVERSIDADE DE LISBOA
			EMU ($Y_t - Y_t^{av}$	EN	ſU	1-E	MU		
	С		0.062	(0.692)	-0.021	(-0.163)	-0.084**	(-2.137)		
λ1	Priv_C _{t-1}		-0.115***	(-4.845)	-0.102***	(-3.148)	-0.048***	(-2.833)		
λ2	ΔY_t		0.424***	(5.823)	0.335***	(6.457)	0.689***	(15.46)		
λ_3	Y _{t-1}		0.067**	(2.168)	0.020	(0.646)	-0.005	(-0.285)		
λ,	$\Delta(Y_t - Y_t^{**})$		0.081	(1.061)						
λs	$Y_{t-1} - Y_{t-1}^{**}$		0.000	(0.026)						
β1	ΔTax		0.164*	(1.912)	0.183*	(1.734)	0.104	(1.056)		
β2	Tax,		0.020	(0.755)	0.050	(1.289)	0.023	(0.705)	17	
β,	$\Delta ORev_t$		-0.023***	(-3.370)	-0.071***	(-2.743)	-0.023	(-1.308)	Yav:	represents the
β4	ORev ₁₋₁		-0.001	(-1.191)	-0.013	(-0.822)	-0.001	(-0.228)	natur	al logarithm of
βs	ΔCE_t		0.1177	(-0.097)	0.142	(1.357)	0.117	(1.084)	natur	
βε	CE _{r-I}	TTC	0.005	(0.257)	0.006	(0.224)	0.048*	(1.852)	the	(weighted)
β7	$\Delta GFKF_t$	XFE	0.045***	(2.704)	0.047**	(2.451)	-0.046*	(-1.755)	<u></u>	a of the ENAL
βs	GFKF _{t-1}		0.011	(1.203)	-0.000	(-0.032)	-0.016	(-1.475)	avera	ge of the ENO
β»	∆Social _t		-0.195***	(-2.922)	-0.146**	(-2.316)	-0.195***	(-2.822)	outoi	it ner canita
β10	Social ₊₁		-0.004	(-1.068)	-0.030	(-1.306)	-0.004	(-0.256)	64696	
β11	$\Delta OExp_t$		-0.069	(-0.605)	0.015	(0.474)	-0.069**	(-2.097)	(after	' joining the
β12	OExp _{i-1}		-0.017	(-0.180)	0.015	(0.742)	-0.017	(-1.296)	Unior	n)
α1	ΔTax_t		0.186***	(5.193)	0.263***	(6.526)	0.061*	(1.681)	Unior	1).
α2	Tax,		0.049**	(2.313)	0.064**	(2.268)	0.039*	(1.956)		
α3	$\Delta ORev_t$		-0.010	(-0.447)	-0.001	(-0.115)	-0.010*	(-1.786)		
α.,	ORev ₁₋₁		0.007	(1.327)	0.003	(0.270)	-0.001	(-0.417)		
αs	ΔCE_t		0.0737	(-1.074)	-0.021	(-0.473)	0.073**	(2.300)		
αe	CErd		0.0020**	(-2.282)	-0.044*	(-1.865)	0.002	(0.125)		
α.	ΔGFKF,	x (1-FE ^C)	0.033***	(3.911)	0.026***	(2.669)	0.009	(1.021)		
α.	GFKF,		0.021***	(3.225)	0.015*	(1.862)	-0.000	(-0.168)		
α.	ASocial		0.039	(1.564)	0.093**	(2.203)	0.016	(0.849)		
Q.,,	Social .		-0.011	(-0.738)	-0.013	(-0.827)	-0.011	(-1.360)		
-10	AOExm.		0.010+	(1.687)	0.012	(0.804)	0.034**	(2.530)		
Q.,	OExp		0.0035**	(-2.156)	0.005	(0.313)	0.003	(0.508)		
	N		428	(280	()	423			
	R ²		0.789		0.793		0.720			
	Redundant FE Test		t-stat.	p-val	t-stat.	p-val.	t-stat.	p-val		
			2.56	0.00	2.10	0.01	2.23	0.00		

- The non-keynesian behaviour of both other expenditure and investment are no longer perceived after countries joined the EMU. Hence, after the EMU, it was harder to observe expansionary fiscal consolidations for these budgetary categories.
- Regarding social benefits, we found a negative elasticity both before and after the EMU, with a significant and expansionary (keynesian) impact during "normal times" in the EMU.

Robustness II:

Consolidations and expansions

		Fiscal Episodes							
			ΔPri	v_C_t	_				
	С		-0.066**	(-2.384)			Fiscal Episodes		
λ_2	Priv_C _{t-1}		-0.048***	(-3.532)				ΔΡ	riv_C _t
λ3	$\Delta \mathbf{Y}_t$		0.569***	(15.73)	φ1	ΔTax_t		0.124***	(3.362)
λ4	Y _{t-1}		0.001	(0.167)	φ2	Tax _{t-1}		0.028**	(2.141)
β1	ΔTax_t		0.106	(1.598)	φ3	$\Delta ORev_t$		-0.005	(-0.759)
β2	Tax_{t-l}		0.039*	(1.961)	ф₄	ORev _{t-1}		0.000	(0.279)
β3	$\Delta ORev_t$		-0.042***	(-2.880)	Φ5	ΔCE_t		0.082**	(2.570)
β4	ORev _{t-1}		-0.004	(-0.922)	Φε	CEt-1	$x(1-FE^{C})x$	-0.003	(-0.322)
βs	ΔCE_t		0.108	(1.460)	φ,	∆GFKFt	(1-FF ^E)	0.011	(1.458)
β6 0	CE _{t-1}	x FE ^C	0.019	(1.213)	ф.,	GFKF.	(112)	0.003	(0.833)
P7 0	∆GFKF _t		0.017	(1.219)	т» ф.	ΔSocial		0.003	(0 142)
P8 0.	GFKF _{t-1}		-0.005	(-0.709)	φ.,	Social		-0.002	(-0.457
P9	∆Social _t		-0.132***	(-3.010)	Ψ10	AOEm		0.002*	(1.670)
P10 8	AOEm		-0.011	(-0.962)	Φ11	OFm		0.028	(1.070)
P11 B12	OFT		-0.022	(-1.351)	Ψ ₁₂	OLAP _{t-1}		0.001	(0.334)
a.	ATax.		0.137***	(2.869)		N D ²		/05	
~	Tax .		0.025**	(2.00)		K ⁻ Rodradout FE To		0.726	0.101
u ₂	AOPor		0.012	(1.250)		Reduidant FE 16	cst	1.77	0.03
u ₃	OPer		-0.012	(-1.250)					0.05
α4	OREV _{t-1}		-0.001	(-0.270)					
α ₅			-0.042	(-0.920)					
α ₆	CE _{t-1}	x FE ^E	0.006	(0.389)					
α7	$\Delta GFKF_t$		0.031**	(2.107)					
α8	GFKF _{t-1}		0.010*	(1.799)					
α9	$\Delta Social_t$		-0.016	(-0.540)					
1 ₁₀	Social _{f-1}		-0.021**	(-2.047)					
a ₁₁	∆OExp _t		-0.003	(-0.196)					
α12	OExp _{t-1}		0.000	(0.042)					

Robustness II: Consolidations and expansions

Wal	d Test									
Consolidations vs Expansions										
Null Hypotesis	t-stat.	p-val								
$\beta_1 - \alpha_1 = 0$	1.64	0.10								
β ₃ -α ₃ =0	-1.66	0.10								
$\beta_{5}-\alpha_{5}=0$	1.71	0.09								
β7-α7=0	-0.64	0.52								
$\beta_{8}-\alpha_{8}=0$	-1.82	0.07								
β ₉ -α ₉ =0	-2.67	0.01								
β ₁₀ -α ₁₀ =0	0.68	0.50								
Consolidations vs Normal Times										
Null Hypotesis	t-stat.	p-val								
β ₁ -φ ₁ =0	-0.25	0.80								
β ₃ -φ ₃ =0	-2.32	0.02								
<mark>β₅-φ₅=0</mark>	0.32	0.75								
β9-φ9=0	-3.40	0.00								
β ₁₁ -φ ₁₁ =0	-1.96	0.05								
Expansions v	s Normal Times									
Null Hypotesis	t-stat.	p-val								
α ₇ -φ ₇ =0	1.17	0.24								
α ₈ -φ ₈ =0	-0.07	0.94								
α ₁₀ - φ ₁₀ =0	-1.81	0.07								
α ₁₁ -φ ₁₁ =0	-1.41	0.16								

- During fiscal expansions, taxes and investment are significantly expansionary, both in the short and in the long run;
- Once again, social benefits showed a negative elasticity in the context of fiscal consolidations;
- Other revenue and social benefits are more recessive during consolidations than in both expansions and "normal times", and tax increases have a more expansionary effect.

Main Conclusions

Full sample (CAPB)		le (CAPB)	Sub-sample (CAPB)		Sub-sample (Narrative)		EMU (CAPB)		Non-EMU (CAPB)		Full sample (CAPB with Expans.		
instrument	Normal times	Consol.	Normal times	Consol.	Normal times	Consol.	Normal times	Consol.	Normal times	Consol.	Normal times	Expans.	Consol.
Δ Tax	0.107		0.146		0.103	0.123	0.263	0.183	0.061		0.124	0.137	
ΔOrev		-0.042		-0.040	-0.009	-0.018		-0.071	-0.010				-0.042
ΔCE	0.050					0.164			0.073		0.082		
Δ GFKF	0.018		0.032	0.045	0.029		0.026	0.047		-0.046		0.031	
Δ Social		-0.150		-0.232			0.093	-0.146		-0.195			-0.152
Δ OExp	0.020				-0.030	0.023			0.034	-0.069	0.028		

Results summary: Short-run elasticities

Only statistically-significant short-run elasticities.

- Positive tax revenue elasticities indicate that consumers have a Ricardian behavior;
- Social benefits have a non-keynesian effect on private consumption, during consolidations;
- Using a narrative approach, private consumption continues to exhibit a non-keynesian response to tax increases, and other expenditures have a recessive impact during "normal times";
- Social benefits are more contractionary in consolidations than in both expansions and "normal times";
- After the launch of the EMU, expansionary fiscal consolidations became harder to observe, since other expenditures and investment lost their non-keynesian role.

Seminar GPEARI/GEE

Thank you!

- Afonso, A. (2001). "Non-Keynesian Effects of Fiscal Policy in the EU-15". ISEG/UTL Technical University of Lisbon, Department of Economics, Working Paper No. 07/2001/DE/CISEP;
- Afonso, A. (2010). "Expansionary Fiscal Consolidations in Europe: New Evidence". Applied Economics Letters 17 (2), 105-109;
- Afonso, A. and Jalles, J. (2014). "Assessing Fiscal Episodes". Economic Modelling 37, 255-270;
- Afonso, A. and Leal, F. S. (2019). "Fiscal Multipliers in the Eurozone: an SVAR Analysis". Applied Economics, 51 (51), 5577-5593;
- Afonso, A. and Martins, L. (2016). "Monetary Developments and Expansionary Fiscal Consolidations: Evidence from the EMU". International Journal of Finance & Economics, 21, 247-265;
- Alesina, A. and Ardagna, S. (2010). "Large Changes in Fiscal Policy: Taxes versus Spending". Chapter in NBER book Tax Policy and the Economy, 24, 35-68;
- Alesina, A., Barbiero, O., Favero, C., Giavazzi, F. and Paradisi, M. (2017). "The Effects of Fiscal Consolidations: Theory and Evidence". NBER Working Paper No. 23385;
- Alesina, A., Favero, C. and Giavazzi, F. (2018). "What do we know about the effects of Austerity?" NBER Working Papers No. 24246;
- Alesina, A. and Perotti R. (1995). "Fiscal Expansions and Adjustments in OECD Countries". Economic Policy, 21, 205-248;
- Alesina, A. and Perotti R. (1997). "Fiscal Expansions in OECD Countries: Composition and Macroeconomic Effects". IMF Staff Papers, 44 (2), 210-248;
- Alesina, A., Perotti R. and Tavares, J. (1998). "The Political Economy of Fiscal Adjustments". Brookings Papers on Economic Activity, 1, 197-266

- Auerbach, A. and Gorodnichenko, Y. (2011). "Fiscal Multipliers in Recession and Expansion", NBER Working Paper Series, No. 17447;
- Barbosa, L. and Costa, S. (2010). "Determinantes dos spreads soberanos na área do euro no contexto da crise económica e financeira.". Boletim Económico | Banco de Portugal (Autumn): 143-164;
- Barrel, R., Holland, D. and Hurst, I. (2012). "Fiscal Consolidation: Part 2. Fiscal Multipliers and Fiscal Consolidations". OECD Economics Department Working Papers No. 933;
- Barro, R. (1974). "Are Government Bonds Net Wealth?" Journal of Political Economy, 82 (6), 1095-1117;
- Bernheim, B. (1989). "A Neoclassical Perspective on Budget Deficits". Journal of Economic Perspectives, 3 (2), 55-72;
- Bertola, G. and Drazen, A. (1993). "Trigger Points and Budget Cuts: Explaining the Effects of Fiscal Austerity". American Economic Review, 83 (1), 11-26;
- Brinca, P., Holter, A., Krussel, P. and Malafry, L. (2016). "Fiscal multipliers in the 21st century". Journal of Monetary Economics, 77, 53-69;
- Carvalho, V. (2009). "Non-Keynesian Effects of a Fiscal Policy in a New-Keynesian General Equilíbrium Model for the Euro Area". Doctoral Thesis, Faculdade de Economia da Universidade do Porto;
- Cournède, B. and Gonand, F. (2006). "Restoring Fiscal Sustainability in the Euro Area: Raise Taxes or Curb Spending?" OECD Economics Department Working Paper, 520;
- Devries, P., Guajardo, J., Leigh, D. and Pescatori, A. (2011). "A New Action-Based Dataset of Fiscal Consolidation". IMF Working Paper 11/128;
- Feldstein, M. (1982). "Government Deficits and Aggregate Demand", Journal of Monetary Economics, 9(1), 1-20;

- Giavazzi, F. and Pagano, M. (1990). "Can Severe Fiscal Contractions Be Expansionary? Tales of Two Small European Countries", NBER Working Paper No. 3372;
- Giavazzi, F. and Pagano, M. (1996). "Non-Keynesian Effects of Fiscal Policy Changes: International Evidence and the Swedish Experience", Swedish Economic Policy Review, 3(1), 67-103;
- Guajardo, J. Leigh, D. and Pescatori, A. (2014). "Expansionary Austerity: International Evidence", Journal of the European Economic Association 12 (4), 949-968;
- Gupta, S., Jalles, J. T., Mulas-Granados, C. and Schena, M. (2017). "Governments and Promised Fiscal Consolidations: Do They Mean What They Say?" IMF Working Paper 17/37;
- Ilzetski, E., Mendoza, E. and Végh, C. (2013). "How Big (Small?) are Fiscal Multipliers?" Journal of Monetary Economics 60 (2), 239–254;
- IMF (1993). "Structural Budget Indicators for the Major Industrial Countries", World Economic Outlook, 99-103;
- Larch, M. and Turrini, A. (2010). "The Cyclically Adjusted Budget Balance in EU Fiscal Policymaking", Intereconomics, 45(1), 48-66;
- McDermott, C. and Wescott, R. (1996). "An Empirical Analysis of Fiscal Adjustments", IMF Staff Papers, 43(4), 725-753;
- Miller, S. and Russek, F. (1999). "The Relationship between large fiscal adjustments and short-term output growth under alternative fiscal policy regimes", University of Connecticut Working Paper;
- Muñoz, E. and Olaberria, E. (2019). "Are Budget Rigidities a Source of Fiscal Distress and a Constraint for Fiscal Consolidation?" World Bank Policy Research Working Paper No. 8957;
- OECD (1996). "The experience with fiscal consolidation in OECD countries", Economic Outlook 59, 3341;

- Sutherland, A. (1997). "Fiscal Crises and Aggregate Demand: Can High Public Debt Reverse the Effects of Fiscal Policy?" Journal of Public Economics, 65(2), 147-162;
- Stockhammer, E., Qazizada, W. and Gechert, S. (2016). "Demand Effects of Fiscal Policy since 2008". Economics Discussion Papers No. 2016-08;
- van Aarle, B. and Garretsen, H. (2003). "Keynesian, Non-Keynesian or No Effects of Fiscal Policy Changes? The EMU case". Journal of Macroeconomics, 25 (2), 213-240;
- Weyerstrass, K.; Jaenicke, J.; Neck, R.; Haber, G.; van Aarle, B.; Schoors, K.; Gobbin, N. and Claeys, P. (2006). "Economic Spillover and Policy Coordination in the Euro Area", European Commission, Economic Papers No 246;
- Yang, W., Fidrmuc, J. and Ghosh, S. (2015). "Macroeconomic Effects of Fiscal Adjustment: A Tale of Two Approaches", Journal of International Money and Finance 57, 31-60.