Conferência

Apresentação dos artigos vencedores do prémio

Concorrência nos Mercados

4 de maio de 2018

Gabinete de Estratégia e Estudos Ministério da Economia NOVA School of Business & Economics

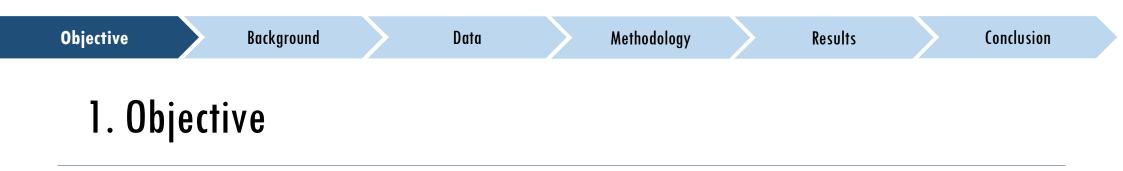
Competition effect on innovation and productivity The Portuguese case

Anabela SANTOS¹, Michele CINCERA², Paulo NETO³ and Maria Manuel SERRANO⁴

¹ Université libre de Bruxelles, iCite (Belgium). E-mail: asantos@ulb.ac.be | ² Université libre de Bruxelles, iCite and ECARES (Belgium). E-mail: mcincera@ulb.ac.be

³ Universidade de Évora, UMPP and CICS.NOVA.UÉvora (Portugal). E-mail: neto@uevora.pt | ⁴ Universidade de Évora, UMPP and CICS.NOVA.UÉvora (Portugal). E-mail: mariaserrano@uevora.pt

av Brussels School Knowledge for impac



Unidade de Monitorizac

Structure of the presentation

- 1. Objective
- 2. Background theory
- 3. Data
- 4. Methodology and conceptual framework
- 5. Results
- 6. Conclusion

- Impact assessment

- Competition Innovation: Patent applications
- □ Competition → Productivity: Total Factor Productivity (TFP) and Labour Productivity (LP)

Scope

- Portuguese firms
- □ **2007 2015**

Objective Background Data Methodology Results Conclusion 2. Background theory Competition effect on innovation Conclusion Conclusion

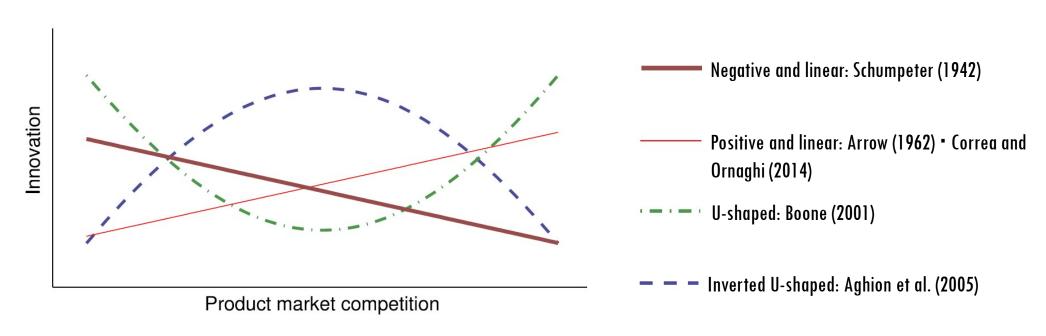
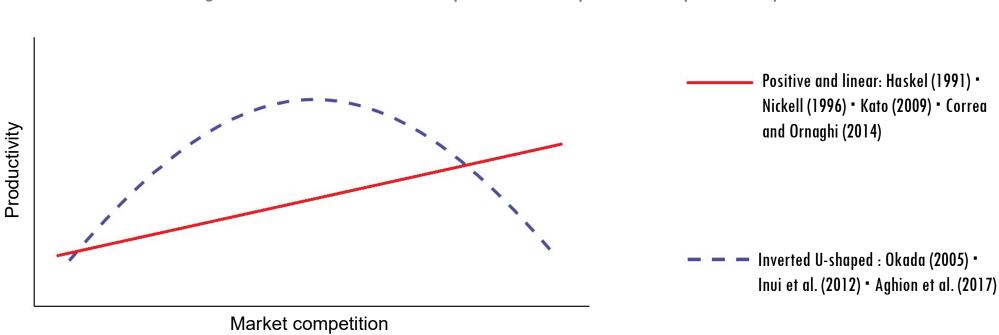



Figure 1. Theoretical relationship between competition and innovation

Source: Im et al. (2015:79)

Background Objective Data Methodology Results Conclusion **2.** Background theory | Competition effect on productivity

Figure 2. Theoretical relationship between competition and productivity

Source: Authors' own elaboration.

Objective Background Data Methodology Results Conclusion 2. Background theory Measuring competition Measuring com

Market Share

- Relative size of a firm in an industry in terms of the proportion of total output (OECD, 1993)
- Herfindahl (1950) and Hirschman (1945) Index (HHI)

$$HHI = \sum_{i=1}^{n} (s_i)^2$$

Where:

- s_i = relative measure of the economic activity - $\sum_{i=1}^n s_i = 1$

Market Power

- Firms' ability to control, raise and maintain price above the level that would prevail under perfect competition (OECD, 1993)
- Lerner (1934) Index (LI)

$$LI = \frac{P - MC}{P}$$

Where: - P = Price

- MC = Marginal cost

Objective Background Data Methodology Results Conclusion 2. Background theory Measuring competition

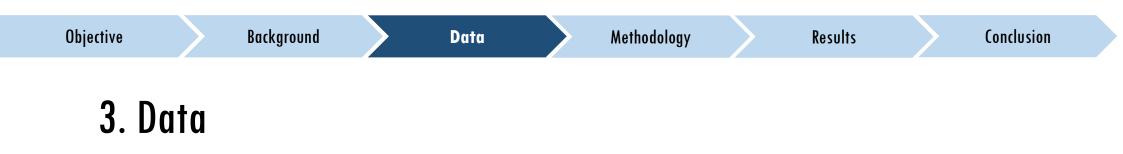
Market Power versus Competition index

- The LI ranges between 0 and 1, where 0 indicates perfect competition and values above 0 some degree of market power
- \triangle LI index \rightarrow \bigtriangledown level of competition (higher level of market power)
- Competition measures $(C_{j,t})$ is the the inverse relationship of LI

$$c_{j,t} = 1 - \frac{1}{N_{j,t}} \sum_{i \in j} LI_{i,t}$$

Where:

- *i* : indexes firm,
- N: number of firms in industry j in year t
- Values near to 1 indicate a higher level of competition and those close to 0 a higher level of market power


Objective Background Data Methodology Results Conclusion 2. Background theory Measuring competition Measuring com

Issues with Lerner Index

- Marginal cost is not directly observed (Correa and Ornaghi, 2014) and it is not easy to measure empirically (OECD, 1993)
- LI doesn't cover fixed costs (Lindenberg and Ross, 1981) marginal cost = variable costs
- An alternative is the price cost margin (Aghion et al., 2005) or profitability index (Correa and Ornaghi, 2014) $\pi_{i,t}$

$$\pi_{i,t} = \frac{operating \ profit_{i,t} - financial \ cost_{i,t}}{sales_{i,t}}$$

 Where the operating profits less financial cost is similar to EBIT (Earnings Before Interest and Taxes) or EBITDA less depreciation and Amortization

- Sample: 654 Portuguese firms
- Sectors: 208 NACE 4-digits
- Period: 2007 2015 (panel with 9 years)
- Selection: only firms with patent application at national and international level

Type of data	Source
Financial data	AMADEUS (Bureau van Dijk)
Patent application	AMADEUS (Bureau van Dijk)
R&D tax incentive	Portuguese tax and customs authority's statistical department (Portal das Finanças)
Direct public support to RDI	Information System of the Portuguese National Strategic Reference Framework (NSRF) 2007-2013 Incentive Systems

Objective Background Data Methodology Results Conclusion

4. Methodology and conceptual framework

Baseline framework: Aghion et al. (2005) and Correa and Ornaghi (2014)

• Competition indicator:
$$c_{j,t} = 1 - \frac{1}{N_{j,t}} \sum_{i \in j} \pi_{i,t};$$
 where $\pi_{i,t} = \frac{EBIT_{i,t}}{sales_{i,t}}$

 \Box Profitability index ($\pi_{i,t}$) of the most representative firms in the Portuguese economy by NACE code 4-digit

 $^{\circ}$ The most representative firms (around 95,593 firms) \rightarrow 92% of the total sales of the sectors under analysis

• EBIT (Earnings Before Interest and Taxes) is used as an equivalent to "operating profits less financial cost"

4. Methodology and conceptual framework

Data

Innovation function

Methodology

Results

• Y = Patent applications

Objective

- Panel data + Count data model = Poisson regression model: $\mu_{i,t} = E(y_{i,t}|x_{i,t}) = \exp(x_{i,t}\beta)$
- Explanatory variables:
 - Competition level
 - Past innovative performance = growth rate of patent stock per employee [estimated using the Perpetual Inventory Method (PIM)];
 - Firm size = number of employees (Scherer, 1965; Crépon et al., 1998)

Background

- Qualification of human resources (Beneito et al., 2014) = labour cost per employee
- Firm age (Beneito et al., 2014)
- Access to public support (Tang, 2006; Chan, 2010; Rizzo and Ramaciotti, 2014) = 1 if the firm received any kind of direct or indirect public support to R&D or innovation (RDI); 0 otherwise.

Conclusion

4. Methodology and conceptual framework

Data

Productivity function

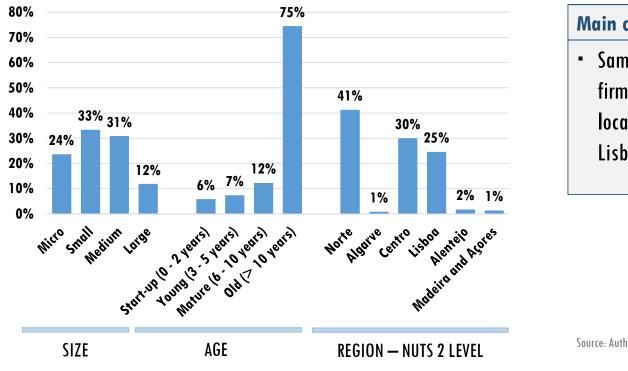
Methodology

Results

• Y = Labour productivity (LP): value added per employee

Background

- Y = Total Factor Productivity (TFP) \leftarrow Cobb-Douglas Production Function
- Panel data + Linear regression model: $y_{i,t} = \beta_0 + x_{i,t}\beta + \varepsilon_{i,t}$, where $\varepsilon_{i,t} = \alpha_i + u_{i,t}$
- Explanatory variables:


Objective

- Competition level
- Firm size (Crépon et al., 1998)
- Qualification of human resources (Crépon et al., 1998) = labour cost per employee
- Stock of patent applications per employee (Crépon et al., 1998) = [estimated using the Perpetual Inventory Method (PIM)];
- Physical capital per employee (Crépon et al., 1998) = tangible fixed assets per employee
- Access to public support (Sissoko, 2011) = 1 if the firm received any kind of direct or indirect public support to R&D or innovation (RDI);
 0 otherwise.

Conclusion

Objective Background Data Methodology Results Conclusion 5. Results Descriptive Statistics

Figure 3. Sample description: size, age and region

Main conclusion:

 Sample mainly composed by SMEs (88%), by firms with more than 10 years old (75%) and located in Norte (41%), Centro (30%) and Lisboa region (25%)

Source: Authors' own elaboration.

Background

Data

Methodology

5. Results | Descriptive Statistics

Table 1. Patent versus competition level, by main economic activity

SECTION	N.	Firms	Competit	ion level	N° F	Patent	Patent	by firm
SECTION	Total	% Total	Average	Ranking	Total	% Total	Average	Ranking
C. Manufacturing industry	429	65.6 %	0.9374	2	1 902	67.3%	4.4	3
F. Construction	22	3.4%	0.9337	3	41	1.5%	1.9	7
G. Trade, repair of automobiles and motorcycles	26	4.0%	0.9470	1	80	2.8%	3.1	4
J. Information and communication	41	6.3%	0.9043	5	112	4.0%	2.7	5
M. Specialized, scientific and technical activities	96	14.7%	0.8868	6	543	1 9.2 %	5.7	1
N. Administrative and support services activities	18	2.8%	0.9117	4	97	3.4%	5.4	2
Other sectors	22	3.4%	0.8554	7	52	1.8%	2.4	6
TOTAL	654				2 827		4.3	

Source: Authors' own elaboration based on AMADEUS database.

Note: Other sectors included firms in the following sections: A. Agriculture, Forestry and Fishing; B. Extractive industries; D. Production and distribution of electricity, gas, steam and air conditioning; E. Production and distribution of water, sanitation, waste management and depollution; H. Transport and storage; I. Accommodation and restoration; K. Financial and insurance activities; L. Real estate activities; P. Teaching and; Q. Human health and social action

Santos, Cincera, Neto and Serrano | 4 May 2018

- Main sectors (86.5%): manufacturing industry (66%) and specialized, scientific and technical activities (15%)
- Higher level of competition: trade and manufacturing
- Low level of competition: services sectors
- On average firms submitted 4.3 patents applications and 39% of the sample hasn't submit any patent applications between 2007 and 2015

Data

Methodology

Results

Conclusion

5. Results | Innovation — Patent application

Table 2. Results of Poisson regression: N° of patent applications (all sectors)

Variables	Random effects		Fixed effects		Random	Random effects		ffects	Random effects		Fixed effects	
variables	Mode	el 1	Mod	el 2	Model 3		Model 4		Model 5		Model 6	
Competition level	1.493	(3.093)	1.916	(3.349)	-		-		-56.70**	(25.83)	-58.69**	(26.25
Competition level (squared)	-		-		-		-		33.25**	(14.89)	34.65**	(15.13
Δ Competition level (growth rate)	-		-		5.397**	(2.355)	5.476**	(2.375)	-		-	
Constant	-2.674	(2.564)	-		-1.141***	(0.188)	-		22.14**	(10.70)	-	
Observations	5,886		3,672		5,232		3,048		5,886		3,672	
Number of id	654		408		654		381		654		408	
Log pseudolikelihood	-4 664.47		-3 276.79		-4 078.84		-2 763.90		-4 656.24		-3 268.09	

Source: Authors' own elaboration. Note: Robust standard errors in parentheses. Significance level: *** p<0.01, ** p<0.05, * p<0.1. When fixed-effects model is reported it refers to conditional fixed-effects.

Year, region and NACE 2 digits dummy are included in the model but not reported.

- Competition level: non-linear relationship (U-shaped) effect on innovation, as predicted by Boone (2001)
- Growth rate of competition level: positive and linear effect on innovation

Methodology

5. Results | Innovation — Patent application

Table 3. Results of Poisson regression (conditional fixed-effects estimator) N° of patent applications (<u>all sectors</u>)

Variables	Mode	el 7	Mod	el 8	Model 9		
Competition level	-93.61***	(32.04)	-96.33***	(34.38)	-		
Competition level (squared)	55.22***	(18.66)	56.74***	(20.26)	-		
Δ Competition level (growth rate)	-		-		5.958***	(2.072)	
Firm size - Log (n $^\circ$ employee)	0.998***	(0.248)	0.991***	(0.257)	0.961***	(0.243)	
Firm age - Log (n° year)	-0.631**	(0.313)	-0.544*	(0.329)	-0.483	(0.340)	
Δ Patent stock per employee	0.549**	(0.262)	0.555**	(0.279)	0.532**	(0.260)	
Log (average salary per employee) - "T-1"	0.403	(0.403)	0.353	(0.402)	0.308	(0.360)	
Received national public support for RDI - "T"	0.383***	(0.125)	-		-		
Received national public support for RDI - "T-1"	-		0.174*	(0.0944)	0.191**	(0.0925)	

Source: Authors' own elaboration.

Note: Robust standard errors in parentheses. Significance level: **** p < 0.01, ** p < 0.05, * p < 0.1.

 N° observations = 2,609. Log pseudolikelihood: Model 2 = -21,449.18 | Model 4 = -2.161,17 | Model 6 = -2.168,18 Year dummy included in the model, but not reported.

- Direct and short-term effect of competition is negative
- Medium-long term effect of competition is positive: faced to an increase of competition in the market, firms are forced to innovate to overcome competition pressure
- Positive effect: firm size, patent stock per employee, public support
- Negative effect: firm age

Table 4. Results of panel regression model: Productivity function (Log TFP), all sectors

Variables	Random effects Fixed		Fixed o	effects Random effects		Fixed effects		Random effects		Fixed effects		Random effects		Fixed effects		
variables	Mode	el 10	Mode	el 11	l Model 12 Mode		el 13	Model 14		Model 15		Model 16		Model 17		
Log (Competition level)	-0.0442	(0.122)	-0.0475	(0.123)	-		-		-		-		-0.202	(0.181)	-0.202	(0.180)
Log (Competition level - squared)	-		-		-		-		-		-		-0.423	(0.530)	-0.413	(0.531)
Δ Log (Competition level) in "T"	-		-		0.0831	(0.0677)	0.0850	(0.0671)	-		-		-		-	
Δ Log (Competition level) in "T-1"	-		-		-		-		0.228**	(0.0891)	0.229***	(0.0884)	-		-	
Constant	1.583***	(0.0300)	1.894***	(0.0114)	1.587***	(0.00518)	1.904***	(0.00381)	1.535***	(0.00401)	1.899***	(0.00353)	1.576***	(0.0258)	1.885***	(0.0126)
Observations	5,4	60	5,4	60	4,9	909	4,	909	4,	344	4,3	344	5,4	60	5,4	60

Source: Authors' own elaboration. Note: Robust standard errors in parentheses. Significance level: *** p<0.01, ** p<0.05, * p<0.1. Year, region and NACE 2 digits dummy are included in the model but not reported.

Main conclusion:

Growth rate of competition level: positive and linear effect on TFP

Table 5. Results of panel regression model: Productivity function (Log LP), all sectors

Variables	Random	Random effects		Fixed effects		Random effects		Fixed effects		Random effects		effects
antinniez	Mode	Model 18		Model 19		Model 20		Model 21		Model 22		el 23
Log (Competition level)	-3.147***	(0.804)	-3.092***	(0.840)	-		-		-		-	
Δ Log (Competition level) in "T"	-		-		-1.432**	(0.590)	-1.511**	(0.595)	-		-	
Δ Log (Competition level) in "T-1"	-		-		-		-		-0.475	(0.332)	-0.456	(0.328)
Constant	2.506***	(0.193)	3.256***	(0.0696)	3.338***	(0.0370)	3.510***	(0.0197)	3.687***	(0.0207)	3.496***	(0.0191)
Observations	4,987		4,987		4,466		4,466		3,939		3,939	

Source: Authors' own elaboration. Note: Robust standard errors in parentheses. Significance level: *** p<0.01, ** p<0.05, * p<0.1. Year, region and NACE 2 digits dummy are included in the model but not reported.

- Competition level: negative and linear effect on LP
- Growth rate of competition level: negative and linear effect on LP

Objective Background Data Methodology Results Conclusion 5. Results Productivity

Table 6. Results of log-log fixed-effect regression: TFP and LP

Variables	Model 24 -	Log (TFP)	Model 25 -	Log (LP)
Δ Log (competition level) in "T"	-		-1.361**	(0.598)
Δ Log (competition level) in "T-1"	0.114***	(0.0405)	-	
Micro sized-firm	-0.300***	(0.0282)	0.430***	(0.136)
Small sized-firm	-0.147***	(0.0221)	0.126	(0.0992)
Medium sized-firm	-0.0735***	(0.0160)	0.0771	(0.0713)
Log (average salary per employee) in "T"	-0.0119	(0.0168)	0.673***	(0.136)
Received national public support for RDI in "T"	0.00584**	(0.00271)	0.0573***	(0.0188)
Patent stock per employee in "T-1"	-0.0170***	(0.00485)	0.0308	(0.0971)
Log (physical capital per employee) in "T-1"	0.0189***	(0.00429)	0.0412	(0.0265)

Source: Authors' own elaboration.

Note: Robust standard errors in parentheses. Significance level: *** p<0.01, ** p<0.05, * p<0.1. N° observations: Model 7 = 4,211 | Model 9 = 4,379. R-Squared (overall): Model 7 = 0.8205 | Model 9 = 0.3669 Constant and year dummy included in the model, but not reported.

- Growth rate of competition: positive effect on TFP and negative effect on LP
- Competition effect on TFP is not immediate
- Positive effect: public support to RDI (LP and TFP), investment (TFP), qualification HR (LP)
- Negative effect: Patent Stock (TFP)
- Firm size: negative effect on LP and positive effect on TFP

Objective Background Data Methodology Results Conclusion 5. Results Complementary analysis Complementary analysis Conclusion C

• Analysis only with firms in manufacturing industry:

- Positive and linear effect on innovation, in line with Correa and Ornaghi (2014)
- Negative and linear effect on LP
- No significant effect was found on TFP

Robustness test

Negative binomial regression for patent function: same results

6. Discussion and conclusion

- Competition effect on Innovation
 - All sectors: U-shaped relationship as predicted by Boone (2001)
 - Manufacturing industry: linear and positive in line with Correa and Ornaghi (2014)

Competition effect on Total Factor Productivity

- Positive effect but only with lagged one period (not immediate effect)
- TFP is linked with technological progress, and the development and implementation of new technology which takes time
 its impact was not immediate and was the result of a dynamic process

6. Discussion and conclusion

- Competition effect on Labour Productivity

Negative and immediate effect, both in level and growth rate

- Possible justification:
 - Product innovation usually has no effect on LP, in fact, it is process innovation that has a positive effect
 - New product development and commercialization could have a negative on LP, because employees need time to adapt their skills for efficient production of the new goods, and during this process productivity can even fall

Thank you for your attention

Maria Manuel SERRANO	mariaserrano@uevora.pt
Paulo NETO	<u>neto@uevora.pt</u>
Michele CINCERA	<u>mcincera@ulb.ac.be</u>
Anabela SANTOS	<u>asantos@ulb.ac.be</u>

Some References

- Aghion (2017) 'Entrepreneurship and growth: lessons from an intellectual journey', Small Business Economics 48(1): 9-24. <u>https://doi.org/10.1007/s11187-016-9812-z</u>
- Aghion, P., N. Bloom, R. Blundell, R. Griffith and P. Howitt (2005) 'Competition and Innovation: An inverted-U relationship', The Quarterly Journal of Economics 120(2): 701-728.
- Aghion, P., R. Blundell, R. Griffith, P. Howitt and S. Prantl (2009) 'The effects of entry on incumbent innovation and productivity', Review of Economics and Statistics 91(1): 20-32.
- Arrow, K. J. (1962) 'Economic Welfare and the Allocation of Resources for Invention', in *The Rate and Direction of Inventive Activity: Economic and Social Factors*, ed. Universities-National Bureau Committee for Economic Research, Committee on Economic Growth of the Social Science Research Council, Princeton University Press, pp. 609 626.
- Beneito, P., M. E. Rochina-Barrachina and A. Sanchis (2014) 'Patents, Competition, and Firms' Innovation Incentives', Industry and Innovation, 21(4): 285 309. <u>http://dx.doi.org/10.1080/13662716.2014.9345466</u>
- Boone, J. (2001) 'Intensity of competition and the incentive to innovate', International Journal of Industrial Organization, 19(5): 705-726. https://doi.org/10.1016/S0167-7187(00)00090-4
- Cobb, C. W. and P. H. Douglas (1928) 'A Theory of Production', The American Economic Review 18(1) (Supplement): 139-165.
- Correa, J. A. and C. Ornaghi (2014) 'Competition & Innovation: Evidence from U.S. Patent and Productivity data', *The Journal of Industrial Economics* 62(2): 258–285. DOI: 10.1111/joie.12050
- Crépon, B., E. Duguet and J. Mairesse (1998) 'Research, Innovation And Productivity: An Econometric Analysis At The Firm Level', Economics of Innovation and New Technology 7(2): 115-158. <u>http://dx.doi.org/10.1080/10438599800000031</u>
- Haskel, J. (1991) 'Imperfect competition, work practices and productivity growth', Oxford Bulletin Of Economics & Statistics 53(3):265-279. DOI: 10.1111/j.1468-0084.1991.mp53003003.x
- Herfindahl, O. (1950) 'Concentration in the U.S. steel industry', Unpublished doctoral dissertation, Columbia University.
- Hirschman, A. (1945) 'National Power and the Structure of Foreign Trade', Berkeley.
- Im, H. J., Y. J. Park and J. Shon (2015) 'Product market competition and the value of innovation: Evidence from US patent data', Economics Letters 137:78-82. https://doi.org/10.1016/j.econlet.2015.10.017
- Inui, T., A. Kawakami and T. Miyagawa (2012) 'Market competition, differences in technology, and productivity improvement: An empirical analysis based on Japanese manufacturing firm data', Japan and the World Economy 24(3):197-206. https://doi.org/10.1016/j.japwor.2012.04.002
- Kato, A. (2009) 'Product Market Competition and Productivity in the Indian Manufacturing Industry', The Journal of Development Studies 45(10):1579-1593. DOI: 10.1080/00220380802663575
- Lerner, A. (1934) 'The Concept of Monopoly and the Measurement of Monopoly Power', The Review of Economic Studies 1(3):157-175. http://www.jstor.org/stable/2967480
- Nickell, S. J. (1996) 'Competition and Corporate Performance', Journal of Political Economy 104(4): 724-746. <u>http://www.istor.org/stable/21388883</u>
- OECD (1993) Glossary of Industrial Organization Economics and Competition Law, OECD Publishing.
- Okada, Y. (2005) 'Competition and productivity in Japanese manufacturing industries', Journal of the Japanese International Economies 19(4):586-616. https://doi.org/10.1016/j.jjie.2005.10.003
- Rizzo, U. and L. Ramaciotti (2014) 'The determinants of academic patenting by Italian universities', Technology Analysis & Strategic Management 26(4):469-483. http://dx.doi.org/10.1080/09537325.2014.882502
- Scherer, F. M. (1965) 'Firm size, Market Structure, Opportunity, and the Output of Patent Inventions', American Economic Review 55:1097-1125.
- Schumpeter, J. A. (1942) The Theory of Economic Development An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle, Transaction Publishers, p. 255.
- Sissoko, A. (2011) 'R&D subsidies and firm-level productivity: Evidence from France', *Discussion Paper 2011-2*, Institut de Recherches Économiques et Sociale de l'Université Catholique de Louvain (IRES), Belgium. Available at: <u>http://sites.uclouvain.be/econ/DP/IRES/2011002.pdf</u> (accessed 4 December 2017)
- Tang, J. (2006) 'Competition and innovation behaviour', Research Policy 35(1):68-82. <u>https://doi.org/10.1016/j.respol.2005.08.004</u>

EXTRA INFORMATION

4. Methodology and conceptual framework

Data

Table A1. Profitability index: Aghion et al. (2005) versus Correa and Ornaghi (2014)

Methodology

Results

Authors	Operating profits	Financial cost = capital stock * capital cost
Aghion et al. (2005)	Operating profits net of depreciation and provisions - similar to EBITDA (Earnings Before Interest, Taxes, Depreciation, and Amortization) if amortization is not taken into account	 Capital stock = Perpetual inventory method → similar to tangible fixed assets with depreciation and amortization Capital cost = 8.5% → Financial cost is similar to amortization cost
Correa and Ornaghi (2014)	Operating Income Before Depreciation 🗲 similar to EBITDA (earnings before interest, taxes, depreciation, and amortization)	 Capital stock = Total Gross Property, Plant and Equipment → similar to tangible fixed assets without depreciation and amortization Capital cost = 8.5% → Financial cost is similar to amortization cost
	Operating profits less financial cost is similar to EBIT (Earr	nings Before Interest and Taxes)
	= EBITDA less depreciation and Ame	ortization

Source: Authors' own elaboration based on Aghion et al. (2005) and Correa and Ornaghi (2014).

Background

Objective

Conclusion

Objective Background Data Methodology Results Conclusion

5. Results | Descriptive Statistics

Table A2. Productivity versus competition, by main economic activity

SECTION	Competi	ition level	TI	FP	L	P
SECTION	Average	Ranking	Average	Ranking	Average	Ranking
C. Manufacturing industry	0.9374	2	7.14	3	37	6
F. Construction	0.9337	3	7.00	4	33	7
G. Trade, repair of automobiles and motorcycles	0.9470	1	7.29	2	200	2
J. Information and communication	0.9043	5	6.24	5	38	5
M. Specialized, scientific and technical activities	0.8868	6	5.45	7	99	3
N. Administrative and support services activities	0.9117	4	5.98	6	45	4
Other sectors	0.8554	7	8.77	1	759	1

Source: Authors' own elaboration based on AMADEUS database.

Note: Other sectors included firms in the following sections: A. Agriculture, Forestry and Fishing; B. Extractive industries; D. Production and distribution of electricity, gas, steam and air conditioning; E. Production and distribution of water, sanitation, waste management and depollution; H. Transport and storage; I. Accommodation and restoration; K. Financial and insurance activities; L. Real estate activities; P. Teaching; Q. Human health and social action TFP = Total Factor Productivity. LP = Labour productivity = valued added by employee.

- Relationship between competition and productivity: positive or negative relationship depending on the economic activity and on the indicator used
 - Sectors with a high level of competition have high performance in TFP and a low performance in LP (section C and F)
 - Sectors with a high level of competition are associated with high (section G) or modest (section J) performance
 - Sectors with low (section M) or modest (section N) competition are linked with low performance in TFP and modest performance in LP

5. Results | Descriptive Statistics

Table A3. Patent versus competition level, by main economic activity

SECTION	N.	Firms	Competit	ion level	N° F	Patent	Patent	by firm
SECTION	Total	% Total	Average	Ranking	Total	% Total	Average	Ranking
C. Manufacturing industry	429	65.6 %	0.9374	2	1 902	67.3 %	4.4	3
F. Construction	22	3.4%	0.9337	3	41	1.5%	1.9	7
G. Trade, repair of automobiles and motorcycles	26	4.0%	0.9470	1	80	2.8%	3.1	4
J. Information and communication	41	6.3%	0.9043	5	112	4.0%	2.7	5
M. Specialized, scientific and technical activities	96	14.7%	0.8868	6	543	1 9.2 %	5.7	1
N. Administrative and support services activities	18	2.8%	0.9117	4	97	3.4%	5.4	2
Other sectors	22	3.4%	0.8554	7	52	1.8%	2.4	6
TOTAL	654				2 827		4.3	

Source: Authors' own elaboration based on AMADEUS database.

Note: Other sectors included firms in the following sections: A. Agriculture, Forestry and Fishing; B. Extractive industries; D. Production and distribution of electricity, gas, steam and air conditioning; E. Production and distribution of water, sanitation, waste management and depollution; H. Transport and storage; I. Accommodation and restoration; K. Financial and insurance activities; L. Real estate activities; P. Teaching and; Q. Human health and social action

- Main sectors (86.5%): manufacturing industry (66%) and specialized, scientific and technical activities (15%)
- On average firms submitted 4.3 patents applications
- Higher level of competition: trade and manufacturing
- Low level of competition: services sectors
- Relationship between competition and innovation: positive or negative relationship depending on the economic activity.
 - Manufacturing industry: high degree of competition and high innovation performance
 - Specialized, scientific and technical activities: low competition and the highest innovation performance

Data

Methodology

Results

Conclusion

5. Results | Innovation — Patent application

Table A4. Results of Poisson regression: N° of patent applications (manufacturing industry)

Variables	Random effects		Fixed effects		Random	effects	Fixed e	ffects	Random	effects	Fixed effects	
vuriubles	Model A1		Model A2		Model A3		Model A4		Model A5		Model A6	
Competition level	9.725**	(4.426)	9.999**	(4.575)	-		-		66.62	(161.0)	55.63	(164.0)
Competition level (squared)	-		-		-		-		-30.70	(87.16)	-24.63	(88.75)
Δ Competition level (Growth rate)	-		-		5.867+	(3.884)	6.012+ (3.919)		-		-	
Constant	-8.980**	(3.675)	-		0.412	(0.803)			-35.33	(74.48)	-	
Observations	3,80	61	2,2	86	3,432		1,864		3,861		2,2	286
Number of id	42	9	254		429		233		42	429		54
Log pseudolikelihood	-2 89	9.36	-2 009.45		-2 50	-2 508.80		-1 671.80		-2 899.00)9.23

Source: Authors' own elaboration.

Note: Robust standard errors in parentheses. Significance level: +p < 0.15; *** p < 0.01, ** p < 0.05, * p < 0.1. When fixed-effects model is reported it refers to conditional fixed-effects.

Year, region and NACE 2 digits dummy are included in the model but not reported.

- Competition level: positive and linear relationship effect on innovation, as predicted by Arrow (1962)
- Growth rate of competition level: positive and linear effect on innovation